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Navigation

Estimate the position and orientation.

Inertial navigation — one of possible instruments.
Newton law Is used:

F=am

Acceleration and angular velocity are measured.
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Inertial Sensors

Most common inertial sensors:

 Accelerometers
The accelerometers detect the combined magnitude
and direction of linear and gravitational
accelerations

* Gyros
The gyroscopes measure the angular rate of rotation
about one or more axes. They are not dependent on
gravity.
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Accelerometers
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Proof mass and two springs, g will be also measured
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Gyroscope
Gyroscope measures the angles of rotation according
Initial position

Gyroscope Spin axis

Gimbal _m Rotor
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Strapdown INS

In late sixties there was proved that gimbals could be
modeled mathematically and gimbals could not be
used. Such kind of INS were called strapdown,
because the inertial sensors are fixed on the body of
moving object. Technical advanced in electronics
reduced the size and cost of inertial sensors. They
became MEMS. Lower cost and higher reliability
supported replacement of mechanisms in classical
understanding with electronics.
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Types of INS

STRAFDOWN - PLATFORM
Al
YA
Y) a ) Xi
a_ AV
Vehicle 4. H‘l"'t -
‘ X

‘Accelerometer is on the
gvrostabilized,
gimballed platform

Accelerometer is
strapdown to the
vehicles body
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Strapdown €->Gimbailed

The 1nertial sensors of a
strapdown system fully
follow the vehicle's angular
motion. Hence, the
measurement of specific
force must be transformed
from the body frame into
that reference coordinate
frame In which the
Integrations of acceleration
are to take place

In gimbailed navigation
systems, the inertial sensors
are mounted on gimbals
whose orientations are
nominally stationary
relative to either the
Intermediate or the
reference coordinate frame.
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The performance of a strapdown system is limited
primarily by two factors not present in gimballed
navigation systems. In gimbailed navigation systems, the
Inertial sensors are mounted on gimbals whose
orientations are nominally stationary relative to either the
Intermediate or the reference coordinate frame. The
Inertial sensors of a strapdown system fully follow the
vehicle's angular motion. Hence, the measurement of
specific force must be transformed from the body frame
Into that reference coordinate frame in which the
Integrations of acceleration are to take place.
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Each small rotation increment represents a finite
rotation. However, finite rotations do not commute,
since Rotation A followed by Rotation B does not, In
general, produce the same result as Rotation B
followed by Rotation A. Consequently, coordinate
transformations computed from these finite
Increments include, to some degree, errors resulting
from the noncommutativity of finite rotations. The size
of these errors depends upon the size of the increment
and upon the sophistication of the algorithm used In
updating the coordinate transformation.
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Why MEMS?

These sensors are inexpensive: most MEMS sensors
IN mass production quantities cost a few dollars.
These sensors are truly miniature - usually less than

(10x10x5 mm) In size, and they consume little power
(<50 mA).
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Wwhy not MEMS?

The biases of MEMS gyros can be brought down to a
level of less than 300 degrees per hour after
appropriate temperature compensation. Such a large
drift, even assuming an accurate initialization of
attitude, will lead to very large position errors after
almost 10 seconds of INS-only navigation.
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Part # o 'l:“" Gyro  Gyro Rate Aﬁﬁfl Accel  Digital L° 'f Q‘?elrtaatlng Package
a cale gt : ply (¢] ;
Range Sensitivity oise ngr?l_.!]% Sensitivity Output I?a Supply Size
UNITS: (°/sec)  (LSBi°/sec) (dps/VHz)  (g) (LSB/g) V) (V +-5%)  (mm)
H +250 131 +2 16384
+500 65.5 +4 8192 2.375V-
£1000 378 0.005 48 i005 |CorsPl VDD Sagy 09
MPU-6000 +2000 16.4 +16 2048
H +250 131 +2 16384
+500 65.5 +4 8192 ) 1.8V£5%  2.375V-
+1000 32.8 0.005 +8 4096 "G orvoD 346y X409
MPU-6050 +2000 16.4 +16 2048
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GYROSCOPE SENSITIVITY
Full-Scale Range FS_SEL=0 +250 o

FS_SEL=1 +500 os
FS_SEL=2 +1000 %s
FS_SEL=3 $2000 os
Gyroscope ADC Word Length 16 bits
Sensitivity Scale Factor FS_SEL=0 131 LSB/(°/s)
FS_SEL=1 65.5 LSB/(°/s)
FS_SEL=2 32.8 LSB/(%/s)
FS_SEL=3 16.4 LSB/(%/s)
Sensitivity Scale Factor Tolerance 25°C -3 +3 %
Sensitivity Scale Factor Variation Over +2 %
Temperature
Nonlinearity Best fit straight line; 25°C 0.2 %
Cross-Axis Sensitivity 12 %
GYROSCOPE NOISE PERFORMANCE FS SEL=0
Total RMS Noise DLPFCFG=2 (100Hz) 0.05 °/s-rms
Low-frequency RMS noise Bandwidth 1Hz to10Hz 0.033 °/s-rms
Rate Noise Spectral Density At 10Hz 0.005 °/sf v Hz
GYROSCOPE MECHANICAL
FREQUENCIES
X-Axis 30 33 36 kHz
Y-Axis 27 30 33 kHz
Z-Axis 24 27 30 kHz
LOW PASS FILTER RESPONSE
Programmable Range 5 256 Hz
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ACCELEROMETER SENSITIVITY
Full-Scale Range AFS_SEL=0 12 g

AFS_SEL=1 +4 g

AFS_SEL=2 +8 g

AFS_SEL=3 +16 g
ADC Word Length Output in two’s complement format 16 bits
Sensitivity Scale Factor AFS_SEL=0 16,384 LSB/g

AFS_SEL=1 8,192 LSB/g

AFS_SEL=2 4,096 LSB/g

AFS_SEL=3 2,048 LSB/g
Initial Calibration Tolerance +3 %
Sensitivity Change vs. Temperature AFS_SEL=0, -40°C to +85°C +0.02 %I°C
Nonlinearity Best Fit Straight Line 05 %
Cross-Axis Sensitivity 12 %
ZERO-G QUTPUT
Initial Calibration Tolerance' XandY axes 150 mg

£ axis 180 mg
Zero-G Level Change vs. Temperature | X and Y axes, 0°C to +70°C +35

Z axis, 0°C to +70°C 60 mg
SELF TEST RESPONSE

300 950 mg

NOISE PERFORMANCE
Power Spectral Density @10Hz, AFS_SEL=0 & ODR=1kHz 400 ng/ v Hz
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TABLE L ACCUMULATED ERROR DUE TO ACCELEROMETER BIAS
ERROR
Grade Accel. Bias E1ror Horizontal Position E1ror [m]

[mg] 1s 10 s 60 s 1 hr
Navigation 0.025 0.00013 | 0.012 | 0.44 1600
Tactical 0.3 0.0015 0.15 5.3 19000

Industrial 3 0.015 1.5 53 190000

Automotive 125 0.62 60 2200 | 7900000
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TABLE IL ACCUMULATED ERROR DUE TO ACCELEROMETER
MISALIGNMENT

- Horizontal Position Exror [m
Accelerometer Misalignment [deg] [m]

1s 10 s 60 s 1 hr
0.050 0.0043 | 0.43 15 57000
0.10 0.0086 | 0.86 3l 110000
0.50 0.043 4.3 150 570000
10 0.086 8.6 310 1100000
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TABLE III ACCUMULATED ERROR DUE TO GYRO ANGLE RANDOM
WALK
ot Gyro Angle Rﬂlll{ll}lll Horizontal ;::]Sl“““ Error
Walk [deg/hr]
1s 10s| 60 s 1 hr
Navigation 0.002 0.00001( 0.000]0.0013| 620
Tactical 0.07 0.0001 | 0.0033 0.046 | 22000
Industrial 3 0.01 0.23| 3.3 (1500000
Automotive 5 0.02 0.45| 6.6 (3100000
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The Coriolis-effect

Let assume a mass that is vibrating in the
radial direction of a rotating system. Due
to the Coriolis force working perpendicular
to the original vibrating direction, a new
vibration will take place in this direction.
The amplitude of this new vibration is a
function of the angular velocity. MEMS
gyros (MicroElectroMechanical Systems),
“tuning fork”and “wineglass”gyros are
utilizing this principle. Coriolis-based
gyros are typically cheaper and less
accuratethan mechanical, ring laser or
fiber optic gyros.

EQUATOR

(
\

University of Pavia March 2017 22 /89



Institute of Information and Communication Technologies

(4
JIICT N Bulgarian Academy of Sciences sotssedefp

Fcoriolis

Fcoriolis
Figure 3: X-axis gyroscope driven mode
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Sensor Fusion
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| MEMS Manufacturing Process
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MPU-9150 Motion Tracking device I Aince
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MPU-6050 CLOSE
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Figure 1. Top side of the MPU-60X0 9-Axis EV Board
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(a) The engineered silicon on insulator (ESOI) wafer is formed starting
with a standard silicon handle wafer etched with simple targets for
backside alignment (mask 1); followed by oxidation and cavity etch
(mask 2). A second wafer is fusion bonded to the handle wafer and
subsequently thinned to define the device layer thickness.

(b) The MEMS wafer is completed by etching the device layer to form
standoffs (mask 3) that define the seal ring, the electrical contacts to
CMOS, and the vertical gap between the CMOS and MEMS; depositing
and patterning a germanium layer (mask 4) over standoffs; and
patterning (mask 5) and deep reactive ion etching the device layer to
form the mechanical structure.
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(c) A standard CMOS wafer is fabricated by an independent foundry,
and cavities (mask 6) can be etched into the CMOS wafer, if needed for
larger clearance under moving MEMS structures.

(d) The MEMS wafer is bonded to the CMOS wafer using AlGe eutectic
bonding between the Al an the CMOS and the Ge on the MEMS wafer.
After bonding, a portion of the MEMS wafer is remaved by conventional
dicing saw cuts to expose the CMOS wire bond pads.

Figure 1: Simple six mask Nasiri-Fabrication process flow.
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Optical gyros

The Sagnac-effect. The inertial characteristics of lightcan
also be utilized, by letting two beams of light travel in a
loop in opposite directions. If the loop rotates clockwise,
the clockwise beam must travel a longer distance before
finishing the loop. The opposite Is true for the counter-
clockwise beam. Combining the two rays in a detector, an
Interference patternis formed, which will depend on the
angular velocity.
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RING LASER GYROS

* An electronic processor calculates the difference
between the frequencies of the two laser beams.

* The rate of rotation of the gyro determines the phase
difference of the frequencies. Each particular phase
difference coincides with a unique rate of turn which
the processor can thus calculate.

« Each ring laser gyroscope only rotates on one axis,
therefore three of them are required to register
changes in pitch, roll, and yaw.
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ADVANTAGES

* Few moving parts

« Small size and light weight

 Rigid construction

« High tolerance to shock, acceleration, and vibration
« High level of accuracy

» Low cost over the lifetime of the gyro

* Because there are no rotating gimbals as in a
mechanical gyro, there is no friction, and therefore no
errors caused by real precession

 Less power consumed than mechanical gyros because
there are fewer moving parts.

University of Pavia March 2017 38 /89



Institute of Information and Communication Technologies P .
 TICT \ Bulgarian Academy of Sciences sressedefp

DISADVANTAGES

« Base cost of Laser ring gyros Is more expensive than
mechanical gyros.

 Laser ring gyros are susceptible to an error known as
“LOCK-IN”
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LOCK-IN

When the rate of turn is very small, the frequency
difference between the two beams is small.

There is a tendency for the two frequencies to “couple”
together and “lock-in” with each other.

As a result of lock-in, a zero turning rate is indicated.
While lock-in errors are not substantial, they can be
accounted for by using more complex ring laser gyro
systems.

By mechanically moving or twisting the system, the
coupling of frequencies does not occur.

This mechanical adjustment is called DITHERING.
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lamp). 1he Qischarge provides enough energy to amounts OI backscatter, wnich couples energy
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IMU

Several inertial sensors are often assembled to form an
Inertial Measurement Unit (IMU).

Typically the unit has 3 accelerometers and 3 gyros (X, Yy
and z), often 3 magnitometers (compass).
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Example (Strapdown IMU)

Honeywell HG1700 (""medium quality''): 3
accelerometers, accuracy: 1 mg, 3 ring laser gyros,
accuracy: 1 deg/h, Rate of all 6 measurements: 100 Hz
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IMU - history

... torpedoes, rockets, airplanes, submarines - military
weaponry.

* Nokia N95 — 2007 — one of the first smart phones

It has GPS, a built-in accelerometer, originally used for
video stabilization and photo orientation.

« Latter Nokia has allowed software to use the data from
Inertial sensors and Pandora’s box was opened and all the

“evils” of the world were available for ... about 2 billions
users of smart phones today.
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IMU - history

... earlier — few specialists designed the algorithms in
secret laboratories on several places in the world, like

Drapper Laboratory in MIT with uniqgue multimillion
equipment.

... now — hundreds of thousands programmers application
hungry
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Option panel of sensor stream
application

Edit Target IP Adress

192.168.0.1

Edit Target Port
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Edit Sensor Update Frequency
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UDP & SD-Card
Stream

UDP Stream

Switch Stream

® /SD-Card Stream

Run in
Background
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Sensor panel of sensor stream
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GPS Position
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1) If the accelerometer measures acceleration with
error, the corresponding distance error will be 8a - t2/2,
e.g. proportional to the square of the time.

2) If the gyro measures turn rate with error, after
Integration the error in attitude will be proportional to
o@ -t . But the attitude is applied to correct the
orientation of acceleration vectors. The attitude error Is
spread over distance calculation and consequences are
measured as ¢ - t*/6
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Accuracy Analysis of IMU

Find a reference!

1) If you have a measuring equipment with at least
one order of magnitude more accurate sensors.

2) If you have rotating device, which gives “exact”
Information about attitude and position

3) If you model sensors measurement

4) With real sensor data, but you plan the experiments
with points with fixed position and attitude
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Naive integration approach for attitude
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Attitude computation

Attitude calculation through Euler - Krylov
algorithm

Cl = CI'Q X
© = w, + tgh(sing * Wy, + COSQ * W, )

0 = cosg * w, —sing * w,

1

Li) = (Sinqa * Wy, + COSP * mg)

cosB
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Attitude computation

Using Poison differential equation for attitude calculation

Cl = CI'Q X

SIN Op 1—cosop

Cr., = Cy (f | G X (ﬁ}{)z)

On "3121
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Attitude computation
Quaternion approach

q = 0.5qw, = 0.5

Qr+1 — fi’k(ﬂ X Uq)
c

_|s
‘4_5

5
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The structure of IMU simulator

Input data
interface

Trajectory
generator

Noise
generator
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Modeled gyros data

Fig. 2 Simple 1D rotation Fig. 3 2D overlapping Fig. 4 3D overlapping
rotations rotation with different
intensity
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Fig. 5 Noised 3D
overlapping rotations
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Flg 6 Noised 2D
overlapping rotations
with bias

Fig. 7 Noised 2D
overlapping rotations
with different trends
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Real gyros data

A

Fig. 8 1D real data
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Experimental results

: Gyros ) The angles through DCM differential equation i Tr'we Euler,anges t‘hmugh d:ﬂeremid' equat@
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Accelerometers raw data m/s2
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Calibration

a_X = (data_arr(6,:)-sl)/al;
a_y = (data_arr(7,:)-s2)/az;
a_z = (data_arr(8,:)-s3)/a3;

The shifts s1, s2, s3 and scaling coefficients al,a2,a3
are estimated by optimization procedure with averaged
data from several positions of the sensors
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W_X_mean = mean(data_arr(2,1:70))
W_y mean = mean(data_arr(3,1:70))
W_zZ mean = mean(data_arr(4,1:70))
(no motion)
gyro_x =data_arr(2,:) - w_X_mean;
gyro_y =data_arr(3,:) - w_y _mean;
gyro_z =data_arr(4,:) - w_z _mean,
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Problem: nonconsistency:

s1 = -0.103644505886850;
s2 = -0.163611281148368;
s3= 0.025479105123220;
al = 0.936997180377589;
a2 = 0.932347804777772:
a3 = 0.871907702114871;
g = 9.72112896

University of Pavia March 2017

s1 = -0.057858055368620:
s2 = -0.148024907905120:
s3 = 0.025066179054880:
al = 0.930790162818945;
a2 = 0.927854935493497:
a3 = 0.874878855049987:
g = 9.687243

s1 = -0.083761479495474;
s2 = -0.2075773931498450;
s3 = 2.360384019177096;
al = 1.021526216348697;
a2 = 1.009070389156962;
a3 = 1.109508357634151:
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trajectory of the body
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Figure 3. Gyro raw signals
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Figure 4. Accelerometer raw signals
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Initial angles determination: based on averaged data
from non-moving accelerometers (no other information,
we do not use compass)
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Extended Kalman and fuzzy
adaptation
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An approach for error
reduction in IMU
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Figure 3. Gyro raw signals
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Figure 4. Accelerometer raw signals
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Figure 2. The reconstracted platform trajectory without change detection
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ITo minimize integration time we will discover motion of
the platform and onlvy when the motion is detected the
integration process will be switched on. When there is no
motion detected, the integration process will be stopped and the
platform orientation and position will remain the same. This
1dea is not new one. For example, m the embedded software on
newest MEMS an activity threshold is inserted for acceleration
sensors. Only accelerations, exceeding threshold, switch on the
flag “Activity”. In spite of its simplicity the realization of this
functionality gives the svstem engineers knowledge when to
initialize the sensor or when to start recalibration procedure. In
this work we develop this 1dea further. We realize more precise

algorithm for activity detection. which is less susceptible from
the sensorsignal bias.
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[We are looking for a change of the mean of a sample with
length equal to N by the following sufficient statistic [6]:

i+ N
N gy — A Ao — My
o i=j+1 -
| V&
L = — Vi
i=NK+1

The change is detected when the inequality 1s fulfilled:

it — M| = m

g
JN
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The tuning parameters of the procedure are m and N. The
procedure 1s applied on the time-series from the all six inertial
sensors — three gyros and three accelerometers. The output
results are fused in a final time-series with two states only —
“0"” and “1”. “Zero™ means to stop integration of sensor output
data and remains in the same state (the same position, velocity
and acceleration) and preserve the same orientation of the
platform in the space. When “One” appears for the first time
the integration process is restarted and a new state vector and a
new orientation of the platform are calculated.
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Figure 5. Application of change detection algorithm on a raw signal
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Figure 6. The fused result from change detection algonthm
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Trajectory of the body
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Figure 7. The reconstracted platform trajectorv with change detection
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Open problems

1. Mathematical model

2. Calibration procedure
- Initial alignment
- real time (optimization procedure)

3. Kalman filter

4. Mathematical model for aided systems (integration with
another sensor, fusion)
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